Teaching

Statistical Learning Theory & Applications — MIT (Fall 2025)

Audience: MIT Grad Students.
Role: Head TA and Co-Instructor.

Senior Thesis — Princeton University (Fall 2024 & Spring 2025)

Audience: BSc students in ORFE.
Role: Co‑advised ≈18 seniors; weekly meetings, feedback on literature review, modelling choices, and write‑up.

Optimization — Princeton University (Spring 2024)

Audience: Multi‑disciplinary undergraduates.
Tasks: Ran precepts, held office hours, graded homework & exams, coordinated course logistics.

Computing and Optimization for the Physical & Social Sciences — Princeton University (Fall 2023)

Audience: Mixed undergraduate cohort.
Tasks: Office‑hours, grading, course organisation.

Analysis of Big Data — Princeton University (Spring 2022 & 2023)

Audience: Undergraduates from several majors.
Role: Head TA – led precepts, managed TA team, designed autograding scripts, held review sessions.

Energy & Commodities Markets — Princeton University (Fall 2021)

Audience: Master in Finance; BSc ORFE.
Tasks: Led precepts, office hours; Python / Excel problem‑sets; exam grading.

Numerical Methods for Partial Differential Equations — ETH Zurich (Spring 2020)

Audience: MSc Physics, Data Science, Computational Biology; BSc Computational Science & Engineering.
Tasks: Precept teaching and C++/theory homework grading.

Computational Methods for Engineering Applications — ETH Zurich (Fall 2019)

Audience: BSc Mechanical Engineering.
Tasks: Precepts and C++/theory homework grading.